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Background & Motivation

e Traditional autonomous driving systems can = 4. {
be limited by the inherent constraints of ) (
single-vehicle perception systems, such as: mw ‘;E"’\

» Short range ' f r e
* Occlusions (blocking of the line of sight) i [[

* By integrating distributed computing into il L
autonomous driving, cooperative perception 7 - 8 i
offers a viable solution to address these _ T [
limitations | LE

m g i

*Credit to Coopernaut (CVPR 2022)
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Background & Motivation (cnt.)

* Cooperative Perception Fusion Mechanisms
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Background & Motivation (cnt.)

* Fusing shared data from other vehicle(s) requires accurate pose
information (location, orientation) to adjust point of view(s).
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Background & Motivation (cnt.)

* Fusing with corrupted pose information can lead to false detection
thus hampering driving policy

i
=
a 5}
= EE ............................... T T E
= — -
E Em .......................................
Ego car’s view Other car’s view
=
a =y
@ e
% e
pERY ) Ve TR (T e =
>/ = L 0 e =

7/26/2024 BB-Align, ICDCS 2024’, Song et al.




Objective

* Input: Two sets of Lidar point clouds captured from two vehicles
* Qutput: Relative pose, transformation matrix, between the two vehicles, i.e.,

distance and orientation
* Cost: Minimal amount of data shared/transmitted between two vehicles

For Ground Vehicles
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Proposed Method (BB-Align)

* A two-staged design:
e 1) Lidar Bird’s-eye View (BV) images match

e 2) Object Bounding Boxes alignment
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Stage 1: BV Image Matching

e Given Lidar point cloud, generate a BV
image as a height map

* Apply image matching techniques to find
relative pose between two BV images
» Detecting keypoints (corners, edges)

 Computing descriptors using surrounding
pixels for each keypoint

* Use paired keypoints to calculate
transformation
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Stage 1: BV Image Matching (cnt.)

* Log-Gabor filter-based representation

BV image B={By, |u,v=1,.., H} =) pz\/u2+’u2, mm) B,
6 = arctan 2(v, u).

2 2
2-D Log-Gabor filter . (P — |R|s] (9 —(Olo]
with parameter s, 0 : L(p, 0, @ = €Xp ( 202 =XP 20.3

0
Pass Bpo through a °"“"“f"“":‘"_ adidie
bank of filters : ‘
Generate Maximum AL
L

Index Map (MIM):

-

e,

Filter Parameters

Frequency-Peak 8, Frequency-Sigma Inf, Theta-Peak 0, Theta-Sigma 0.17453 (b) BO

Credit to https://peterscarfe.com/logGaborFilter.html
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Stage 1: BV Image Matching (cnt.)

* Given the feature map MIM, we can computer Bird’s-eye View Feature
Transform (BVFT) descriptors [1] for all keypoints (similar to SIFT).

* With the paired keypoints in pairs, we employ the RANdom SAmple
Consensus (RANSAC) algorithm to estimate the relative pose between
the twoimages. |

[1] L. Luo, S. Cao, B. Han, H.-L. Shen, and J. Li,
“Bvmatch: Lidar-based place recognition using bird’s-
eye view images,” IEEE Robotics and Automation

Letters, 2021. (d) 'Pl (e) Bl (f) MIM, (g) Match By and B,
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Stage 2: Motivation

* LiDAR self-motion distortion: When the car is moving, each point is
not measured at the same location, thus causing distortion.

Large static landmarks
(buildings, trees) are
aligned, but the moving

objects (vehicles) are

The 3-D bounding boxes, indicated in blue and red, highlight objects
(cars) detected by different cars.

Al , © The work is supported by the National Science Foundation
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Stage 2: Object Bounding Box Alignment

* Given the coarsely alighed images, we use the vertices of the detected
objects (cars) as common observations for further alignment by
running RANSAC again.
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Performance Evaluation .
OPyTorch &

e Dataset: the only real-world V2V dataset, V2V4Real. We selected 12K
frames out of the total 20K, focusing on those where at least two
common cars are observed by both vehicles

* Model setup:
* BV image match in written C++ integrated into codebase of V2V4Real.

* Object detection models: PointPillar-based F-Cooper and the self-attention-
enhanced coBEVT

* Metrics:
* Translation Error: the absolute error of positional shift t,, t,,
* Rotation Error: the absolute angular difference a.
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Accuracy Study

 Compared to VIPS[1]: The only other non-training, plug-and-play method, which
is based on graph matching.

Method
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Fig. 7: Pose recovery accuracy comparison.

S. Shi, J. Cui, Z. Jiang, Z. Yan, G. Xing, J. Niu, and Z. Ouyang, “Vips: real-time perception fusion for infrastructure-assisted autonomous driving,” in Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking, MobiCom '22.
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Performance Impact Factors
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Fig. 11: Accuracy of BV image matching w.r.t. distance (m).
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Fig. 12: Accuracy of box alignment (upon BV image match-
ing) w.r.t. the number of commonly observed cars between the
two vehicles.

Stage 1 (BV Image Matching) is sensitive to distance. Stage 2(Box Alignment) is largely

determined by co-visible cars.
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Objection Detection Improvement

* We incorporate the proposed method into various fusion techniques
and examine the differences compared to not using it.

AP@IoU=0.5/0.7
o = 2m,09 = 2° Pose Recovered
Overall (0-30m \ 30-50m 50-100m Overall (0-30m Y} 30-50m 50-100m

Early Fusion [21.2/8.9 ) 34.4/14.9 19.6/9.9  3.5/0.9 139.6/18.0) 167.1/36.5) 30.5/13.0 7.1/1.3
Late Fusion  18.7/9. 33.1/189 16.8/7.9  2.5/0.6 33.9/12.9 163.0/28.3] 27.0/9.2  4.7/0.7
F-Cooper 26.5/14.3 | 43.0/25.00 23.5/12.3 3.6/1.3 40.8/18.1 |70.6/35.7} 29.6/11.8 7.1/1.1

coBEVT 31.1/17.8 ¥52.6/32.9 27.2/15.6 4.7/1.9 38.9/14.7 \71.5/29.4) 28.6/11.4 5.2/0.9

TABLE I: Comparison of object detection results under corrupted pose, with and without our pose recovery framework.

Method

The improvement is significant in all cases, with nearly a 2x gain in the early fusion case.

Notably, the improvement in the close-range scenarios (0-30m) is even more exciting, with
AP@IloU=0.5 scores across all methods exceeding 60.0, and some reaching above 70.0.

Al , © The work is supported by the National Science Foundation
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Summary and Future Work

* We introduce BB-Align, a lightweight, two-stage pose recovery
framework tailored for V2V cooperative perception.

 Utilizing Bird’s-eye View (BV) images and object bounding boxes, the
framework accurately estimates the relative pose between two cars
while minimizing communication costs.

* Designed as a non-training-based, plug-and-play module, BB-Align
integrates seamlessly with existing V2V systems.

* Future work includes exploring enhancements in time efficiency.
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